Leybold

Physics of turbomolecular pumps and demonstration o conductance influence in HN

Peter Lambertz Senior Market Segment Manager R&D

Nanospain 2017, San Sebastian

1	Basics of turbomolecular pumps
2	Key parameters of turbomolecular pumps
3	The operational diagram: The turbo's "ID card"
4	Conductance influence in HV
5	Summary

1	Basics of turbomolecular pumps
2	Key parameters of turbomolecular pumps
3	The operational diagram: The turbo's "ID card"
4	Conductance influence in HV
5	Summary

Basics of turbomolecular pumps

Leybold

Physics of turbomolecular pumps and demonstration of conductance influence in HV

Basics of turbomolecular pumps

Leybold

Turbomolecular Pump

- Kinetic vacuum pump
- High vacuum pump w/ typical operating pressures between 10⁻³ and 10⁻¹¹ mbar
- Cannot compress against atmospheric pressure, i.e. a "backing pump" to further compress the gas to 1000 mbar
- Typical pumping speed sizes between 10 l/s and ~ 4000 l/s
- Main pumping principle: fast spinning rotor transfers momentum to gas particles in a molecular flow regime
- Typical rotor speeds: 500 1500 Hz (24000 90000 rpm)
- Technical challenges: rotor design, bearing concept (mechanical, magnetic, hybrid), safety

Basics of turbomolecular pumps

Leybold

"Classic" turbo pumps and "Wide-range" turbo pumps

Turbomolecular pumping stage

Pump containing a Turbomolecular pumping stage & Compound pumping stage

6

Physics of turbomolecular pumps and demonstration of conductance influence in HV

1	Basics of turbomolecular pumps
2	Key parameters of turbomolecular pumps
3	The operational diagram: The turbo's "ID card"
4	Conductance influence in HV
5	Summary

Key parameters of turbomolecular pumps

Leybold

Leybold						
Ready for Take Off	Normalization Normalization Normalization Normalization		TECHNICAL FEATURES			
			MAGINTEGRA Magnetically levitated turbomolecular pumps		1600 iP(L) Booster	1700 iP(L)
CAMERISONS Trailed and Barry In	Dealer Street / nor 20 and 21		Mounting orientation		any	1
			Inlet flange	DN	250 ISO-	F/CF
			Pumping speed [l/s]	N ₂	1600	1650
			Max. compression ratio	N ₂	107	10 ⁸
			Max. throughput [mbar l/s]	N2	60	40
			Max. FV pressure [mbar]	N ₂	0,9	4

	Key Performance Indicators	
1	Pumping Speed	Maximum pumping speed at low backing pressures
2	Maximum Compression Ratio	Maximum compression (Inlet pressure/Outlet pressure) under no flow conditions (zero pumping speed).
3	Maximum Throughput	Maximum gas flow before the pumping speed starts to degrade by more than 10%
4	Maximum Fore Vacuum (FV) Pressure	Maximum exhaust pressure before pumping speed starts to degrade by more than 10%.

Physics of turbomolecular pumps and demonstration of conductance influence in HV

8

1	Basics of turbomolecular pumps
2	Key parameters of turbomolecular pumps
3	The operational diagram: The turbo's "ID card"
4	Conductance influence in HV
5	Summary

The operational diagram: The turbo's "ID card"

Leybold

The Qp diagram cannot only show the throughput, but also other useful bits of information!

10

Physics of turbomolecular pumps and demonstration of conductance influence in HV

The operational diagram: The turbo's "ID card"

Leybold

How to read and derive information from the Qp diagram

The operational diagram: The turbo's "ID card"

You learn if a certain backing pump is a suitable candidate

Physics of turbomolecular pumps and demonstration of conductance influence in HV

1	Basics of turbomolecular pumps
2	Key parameters of turbomolecular pumps
3	The operational diagram: The turbo's "ID card"
4	Conductance influence in HV
5	Summary

Conductance in HV- example calculation

Leybold

Influence of the suction pipe/Conductance

14

Conductance in HV – Example calculation

Example: Consideration of Conductance (DN160)

Physics of turbomolecular pumps and demonstration of conductance influence in HV

Conductance in HV – Example calculation

Example: Consideration of Conductance (DN250)

Physics of turbomolecular pumps and demonstration of conductance influence in HV

5	Summary
4	Conductance influence in HV
3	The operational diagram: The turbo's "ID card"
2	Key parameters of turbomolecular pumps
1	Basics of turbomolecular pumps

Summary – Rules for working in HV conditions

Leybold

Basic rules to obtain low pressures and fast pump down times

- Minimize surface area inside chamber
- Use materials with low desorption rates
- suitable pre treatment of materials (e.g. electro polishing)
- no internal gaps or trapped volumes
- heating or cooling of chamber surfaces
- reduction of sealings, feedthroughs etc.
- Sufficiently high installed pumping speed with high connection conductance:
 - Minimise pipe length
 - Maximise diameters
 - Avoid valves, ellbows, reducers etc
 - Use components with smooth (inner surfaces)

Thank you for your attention!

Leybold

19

Physics of turbomolecular pumps and demonstration of conductance influence in HV