

Bio-Nanohybrid Materials

Eduardo Ruiz-Hitzky, Margarita Darder, Pilar Aranda

Instituto de Ciencia de Materiales de Madrid, CSIC Spain

2nd NANOSPAIN WORKSHOP, BARCELONA 2005

AIM OF THIS COMMUNICATION

-Overview of procedures to obtain biopolymer nanocomposites provided with specific functionality

-Applications of such materials towards advanced devices

-Research results from our own laboratory

ORGANIC-INORGANIC HYBRID MATERIALS

Grafting of organic groups

EXAMPLES

- ®

grafting of organosilanes on silicic surfaces

Sol-gel methods

self-templating synthesis of organosilicic compounds

Intercalation of organic compounds

polymer & biopolymer nanocomposites Nanostructured Organic-Inorganic Functional materials have to be prepared by a combination of physical and chemical methods following the modus operandi characteristic of the procedures of molecular engineering.

Idealized representation of a "nanochemist" applying methods for deliberate modifications of the functional properties of a 2D solid material. The picture includes some laborers of theoretical formation studying physical processes into the solid.

E. RUIZ-HITZKY "Organic-Inorganic Materials: From Intercalations to Devices". Chapter 2. In: P. Gómez-Romero, C. Sánchez, eds. Functional Hybrid Materials; Wiley-VCH Verlag GmbH, 2004.

STRUCTURAL & FUNCTIONAL NANOCOMPOSITES

COMPOSITE MATERIALS

Are solids resulting from the combination of two or more simple materials that develop a continuous phase and a dispersed phase which together have a set of properties that is essentially different from the components taken separately. polymer metal ceramic...

glass fiber silica...

NANOCOMPOSITE MATERIALS

Are composites in which the dispersed phase presents <u>at least one</u> <u>dimension at the nanometric scale</u>.

2-nano-D Fibres, tubes...

1-nano-D Layered solids

HYBRID NANOCOMPOSITES BASED ON ORGANIC POLYMERS AND LAYERED SOLIDS

EXAMPLES OF POLYMER-LAYERED SOLID NANOCOMPOSITES

Possibilities:

- **inorganic host**: non-charged, positively or negatively charged layers, insulator, semiconductor, redox-sites, ...
- polymers: insulators, conducting, ionomers, polyelectrolytes...

Examples:

Host	polymer
layered silicates (clays) (montmorillonite,)	PVA, PS, PSS, PMMA, PAN, PEG, PEO, PANi, PPy
layered double hydroxides (MgAI, ZnAI, ZnCr,)	PSS, PVS, PAA, PANi
phosphates & phosphonates (α-ZrP,)	PPy, PANi,
metal oxides (V ₂ O ₅ ·nH ₂ O, CoO ₂ , MoO ₃ ,)	PVP, PPV, PANi, PPy, PTh, PEG, PEO
metal chlorides & oxychlorides (FeOCI, α -RuCl ₃ ,)	PVP, PPy, PANi, PTh, PEO
metal chalcogenides (MoS ₂ , NbSe ₂ ,)	PEO, PANi
metal phosphochalcogenides (MnPS ₃ , CdPS ₃ ,)	PEO, PANi,
graphite oxide	PEO, PANi

LAYERED SILICATES (CLAYS)

Natural or synthetic phyllosilicates. Type 2:1 charged silicates (montmorillonite, hectorite,...)

TWO <u>tetrahedral</u> layers of M^{IV} (eg. Si) which are coordinated by oxygen anions to M^{III} (eg. AI) in ONE <u>octahedral</u> layer

substitution of M^{III} cations by M^{II} cations in the octahedral layer and/or substitution of M^{IV} cations by M^{III} cations in the tetrahedral layer

overall <u>negative</u> charge

a large variety of characteristics due to:

- nature of cations M^{II} ,M^{III} and M^{IV}
- nature of the interlayer cation

electrical neutrality is kept by exchangeable interlayer cations

1.20 nm

LAYERED DOUBLE HYDROXIDES (LDHs)

LDHs are synthetic or natural solids with a layered structure similar to that exhibited by natural $Mg(OH)_2$, brucite.

due to:

- nature of cations M^{III} and M^{III}
- nature of the interlayer anion

Characteristics:

- high charge density in the layers
- anion-exchange properties: ion-exchange capacity 2-3 times greater than clays

electrical neutrality is kept by exchangeable interlayer anions

Bio-nanocomposites : State of the Art & Examples

Bio-nanohybrids from collagen/alginate and hydroxyapatite: biomaterials for bone tissue engineering and drug delivery:

newly formed bone retained the original size of the bionanocomposite implant

(Sotome et al. Mater. Sci. Engineering C, 2004, 24, 341-347)

Negatively charged DNA has been intercalated in a LDH matrix LDH works as a nonviral vector to transfer the DNA into the cells:

(Choy, et al. Angew. Chem. Int. Ed., 2000, 39, 4042-4045)

OBJECTIVES

The development of bio-nanocomposites based on the intercalation of natural polysaccharides into layered solids (clays & LDHs)

$\mathbf{1}$

Reinforcement of biopolymers Tuneable ion-exchange behaviour

$\mathbf{\mathbf{1}}$

•Application of the bio-nanocomposites as active phase of potentiometric sensors

Controlled release of electrically charged drugs

CHITOSAN-CLAY BIO-NANOCOMPOSITES

In acid solutions (acetic acid, 1%) as a positively charged polymer
(-NH₃⁺, pK_a = 6.3), which is adsorbed on smectite clay suspensions.
•lon-exchange process

•Polymer-salt intercalation

M. DARDER, M. COLILLA, E. RUIZ-HITZKY Biopolymer-clay nanocomposites based on chitosan intercalated in montmorillonite Chem. Mater. 15, 3774-3780 (2003)

ANIONIC POLYSACCHARIDES LDH BIO-NANOCOMPOSITES

Pectin *From citrus fruits*

iota-Carrageenan From red algae chitosan-montmorillonite bio-nanocomposites anionic polysaccharides-LDH bio-nanocomposites

M. DARDER, M. COLILLA, E. RUIZ-HITZKY Biopolymer-clay nanocomposites based on chitosan intercalated in montmorillonite <u>Chem. Mater. 15</u>, 3774-3780 (2003) M. DARDER, M. LOPEZ-BLANCO, P. ARANDA, F. LEROUX, E. RUIZ-HITZKY *Bio-nanocomposites* based on layered double hydroxides <u>Chem. Mater. 17, 1969-1977 (2005)</u>

Intercalation of chitosan in Na⁺-montmorillonite

ONE-POT SYNTHESIS OF BIO-POLYMER/LDH NANOCOMPOSITES

Co-organized assembly or templating co-precipitation:

TEMPLATE SYNTHESIS OF BIOPOLYMER-LDH NANOCOMPOSITES

Anionic biopolymer solution, under magnetic stirring and N₂ atmosphere

1977 (2005)

CHARACTERIZATION OF THE BIOPOLYMER- NANOCOMPOSITES

- X-ray diffraction
- FTIR spectroscopy
- Solid state ¹³C NMR spectroscopy
- Scanning electron microscopy (SEM)
- Thermogravimetry (TG) and differential thermal analysis (DTA)
- Direct potentiometry

X-Ray Diffraction

Solid-state ¹³C NMR spectroscopy

Chitosan-clay bio-nanocomposite

¹³C NMR Spectroscopy

TREATMENT WITH NaNO₃

Development of potentiometric sensors

Chitosan-clay sensors development

The good mechanical properties of bionanocomposite avoid the use of binders as it is usual in CPEs or Epoxy Based Sensors

Chitosan-montmorillonite potentiometric sensor

The potentiometric response of a sensor based on the chitosanclay nanocomposite with a chitosan bilayer is evaluated towards different anions

M. DARDER, M. COLILLA, E. RUIZ-HITZKY Chitosanclay nanocomposites: application as electrochemical sensors <u>Appl. Clay Sci. 28</u>, 199-208 (2005)

Selectivity coefficients

$NO_{3}^{-} \approx CH_{3}COO^{-} \approx Cl^{-} >>> SO_{4}^{-2-} \approx Cr_{2}O_{7}^{-2-} >> Fe(CN)_{6}^{-3-}$

LDH Bio-nanocomposite CPEs

bionanocomposite

Sensor arrays controlled by Artificial Inteligence

Combination of sensors with AI techniques give sophisticated devices, as artificial noses and tongues

Application of Case-Based Reasoning (CBR) for multicomponent analysis

M. COLILLA, C.J. FERNÁNDEZ, E. RUIZ-HITZKY <u>The Analyst</u>, 127, 1580-1582 (2002)

Applications

-water quality: drink water & industrial pollution

-lons in biological fluids

-Automation in fertiirrigation

Home-made "electronic tongue" entirely developed in our lab, using sensors based on bio-nanocomposites, applied to control the water quality

CONCLUSIONS

Cationic or Anionic polysaccharides form bionanocomposites by combination at the nanometric scale with layered silicates (INTERCALATION) or double hydroxides (CO-ORGANISED ASSEMBLY) resulting in **functional hybrid nanostructured materials** with:

- Good mechanical properties
- Controlled ion-exchange behaviour

These results open a way to prepare novel bio-nanohybrids provided of structural or functional properties.

FUTURE WORK

The use of other layered host solids (phosphates, phosphonates, chalcogenides, etc.) & bio-polymers (polypeptides, nucleic acids, etc..)

MAT2003-06003-C02-01 CICYT

07N / 0070 / 2002 Comunidad Autónoma de Madrid

IFAPA - 2002.000890

Junta de Andalucía